Coordinated Disclosure of Dual-Use Capabilities: An Early Warning System for Advanced AI
Future AI systems may be capable of enabling offensive cyber operations, lowering the barrier to entry for designing and synthesizing bioweapons, and other high-consequence dual-use applications. If and when these capabilities are discovered, who should know first, and how? We describe a process for information-sharing on dual-use capabilities and make recommendations for governments and industry to develop this process.
Towards Publicly Accountable Frontier LLMs: Building an External Scrutiny Ecosystem under the ASPIRE Framework
This paper discusses how external scrutiny (such as third-party auditing, red-teaming, and researcher access) can bring public accountability to bear on decisions regarding the development and deployment of frontier AI models.
Deployment Corrections: An Incident Response Framework for Frontier AI Models
This report describes a toolkit that frontier AI developers can use to respond to risks discovered after deployment of a model. We also provide a framework for AI developers to prepare and implement this toolkit.